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Abstract: In this paper we used DNA in mathematics. The main purpose of this paper is to study the topology and geometry of DNA 

under different special constraints and to solve the   topological mechanism of enzymes sites specific recombinases and 

topoisomerases. In this paper we illustrate the use of mathematical and computational methods in variety of DNA topology problem.  

It is intended to introduce the reader to the exciting the application of topology to the study of DNA. 

 

Index terms: DNA knots, Bacteriophage P4, DNA packing, Random knots, specific recombination, Xer, Tangles. 

 

 

1.Introduction:  DNA is made up of two polymeric strands composed of monomers that include a nitrogenous base (A-adenine, C-

cytosine, G- guanine, and T-thymine), deoxyribose sugar, and a phosphate group. The sugar and phosphate groups, which form the 

backbone of each strand, are located on the surface of DNA while the bases are on the inside of the structure (see Fig. 1). Weak 

hydrogen bonds between complementary bases of each strand (i.e., between A and T and between C and G) give rise to pairing of 

bases that holds the two strands together. The base pairs (bp) are flat and stack on top of each other like dominoes with centers 

separated by approximately 0.34 nm. In normal conditions each base pair is rotated relative to its predecessor by approximately 340, 

giving rise to the familiar right-handed Watson-Crick double helix.       

 

The chemical nature of the backbone gives each strand an orientation- one end is called the 5′-end and the other the 3′-end. In duplex 

DNA the two strands run anti parallel to each other. A closed DNA (also called a plasmid or ring) is formed when the ends of each 

strand are joined by a covalent bond. A prokaryotic organism, e.g., a bacterium, lacks nuclear structures and its entire genome is in the 

form of a single closed duplex DNA. Genomic DNA of a eukaryotic cell is contained within a nucleus and it is divided into a number 

of chromosomes.  

The DNA of any organism must be folded and packed in a complicated fashion in order to fit inside a cell. This is complicated by the 

fact that DNA resists bending and twisting deformations and also has a tendency to repel itself electro statically. In addition to being 

compacted, portions of DNA must be accessible at various moments during the lifetime of the cell, so that the genes encoded in the 

DNA can be expressed and proteins produced when necessary. The effort to understand how DNA is packed and unpacked in cells, 

and how its mechanical properties influence the processes of transcription, replication and recombination, is one of the driving forces 

behind the development of mathematical models of DNA. 

 

2. How to use topology in DNA? 

When Watson and Crick first proposed the double helical model for DNA [147], they remarked: “Since the two chains in our model 

are intertwined, it is essential for them to untwist if they are to separate. Although it is difficult at the moment to see how these 

processes occur without everything getting tangled, we do not feel that this objection would be insuperable.”The entanglement of 

DNA and Nature’s ways of coping with it is the subject of DNA topology. 

In the first approximation, a closed DNA molecule can be treated as a single closed curve in space. (The resistance of DNA to 

bending implies that this curve is rather smooth.) Because during regular deformation the bonds in DNA strands do not break, it is 

natural to consider the problems of DNA knotting and catenation.DNA plasmids can become catenated during DNA replication, a 

process in which the two strands of DNA are separated, each strand is complemented by one newly formed strand, and instead of a 

single plasmid one obtains two plasmids that are catenated in the same way the strands were linked in the original plasmid. Of course, 

it is crucial that during replication the catenation of the plasmids is removed so that they can be separated and placed one in each of 

the daughter cells. The enzymes that preform decatenation are called type II topoisomerases [146]. They operate by a strand passage 

mechanism in which two DNA segments are brought to a close contact, one of the segments is severed in such a way that both 

backbone chains of the molecule are broken, the second segment of DNA is passed through the gap in the first segment, and finally 
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the severed segment is resealed. DNA knotting rarely occurs naturally, but it has been achieved in a laboratory using the 

aforementioned topoisomerases and also DNA recombinases, enzymes that cut two DNA molecules at specific recognition sites and 

then switch and reconnect the ends. Because a given recombinase only forms knots of certain types, knot theory, and in particular 

tangle analysis, has been applied to the problem of determining the structure and function of these enzymes [55, 47, 141]. The 

changes in knot type resulting from strand passages have been classified and the probabilities of such passages have been estimated 

[46, 70]. Knotting also occurs in DNA closure experiments in which open (linear) DNA segments spontaneously cyclize to form 

closed DNAs. Since DNA thermally fluctuates, the probability of forming a knot can be related to the probability that a random 

configuration of a phantom DNA (i.e., a DNA allowed to pass through itself) has the topology of a knot (see Section  It was shown 

that in the limit of length going to infinity a randomly cyclized polygon will be knotted with probability1 [48].A closed DNA 

molecule can also be viewed as a collection of two continuous curves - the DNA strands. This is because the biochemical nature of 

the strands guarantees that during closure each strand of the DNA can only bind to itself. The axial curve of a closed DNA, which can 

be thought of as the curve passing through the centroids of the base pairs, is also a closed curve. For any two closed curves C1 and C2 

one can define a quantity, called the linking number Lk, that characterizes how the curves are inter wound with each other. The 

linking number can be found by examining a generic projection of the two curves on a plane (a projection in which every crossing of 

one curve with the other is transversal). First, orientation is assigned to each curve and a sign to each crossing of one curve over the 

other, in accord with the convention shown in Fig. 2A. The linking number Lk is then taken to be one half the sum of all signed 

crossings (see Fig. 2B and C); it is a topological invariant of the two curves, i.e., a number independent of  homotopic deformations of 

the curves that do not pass one curve through the another. In DNA research it is customary to take C1 to be the axial curve of the 

molecule and C2 one of the backbone chains.  

 For differential curves, a formula for linking number interms of a double integral was found by Gauss [42] 

 

 
Where   Ci is defined by giving its position xi(s) in space as a function of the arc-length s, and  

 ti(s) = xi(s) = dxi(s)/ds . 

There are two geometric properties of curves that are intimately related to the linking number. The first property, called the writhe 

Wr, 

  

                  
Characterizes  the amount of chiral deformation of a single curve. To find Wr, one assigns orientation to the curve and computes the 

sum of signed crossings in a planar projection along every direction; Wr is equal to the average of such sums over all projections. 
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Examples of curves with various values of Wr are shown in Fig. 3. For a closed differentiable curve C a formula for W r analogous to 

(3.1) exists: 

 
Alternative formulae relating Wr to the area swept by the vector x(s1) − x(s2) on a unit sphere when traversing C, or the difference in 

writhe of two closed curves can be found in [57, 1]. 

The second property, called the twist Tw, measures the winding of one curve about the other. The most familiar definition requires 

that the curves under consideration be differentiable; the twist of C2 about C1 is 

 
where d(s) = x2(σ(s)) − x2(s) is taken to be perpendicular to t1(s). 

Neither the writhe nor the twist are topological invariants. However, it follows from the results of Calugareanu [29] and White [149] 

that the linking number of two closed curves is the sum of the writhe of one curve and the twist of the second curve about the first: 

 
This relation has important implications for a closed DNA molecule. Since in a closed duplex DNA Lk is invariant, any change in Tw, 

which may come about as a result of binding of DNA to proteins (such as histones) or intercalating molecules, will induce a 

corresponding opposite change in Wr. Alternatively, DNA mechanics tells us that if Lk is changed by cutting and resealing of DNA 

strands, that change will be partitioned into a change in Tw and a change in Wr of equal signs. In DNA research an increase in the 

magnitude of writhe, accompanied by an increase in the number of crossings of the molecule, is called supercoiling, and a molecule 

with high |Wr| is known as supercoiled DNA. 

 Supercoiling is a characteristic deformation of a closed DNA that can be observed and quantified experimentally. Supercoiling can be 

either detrimental or beneficial to a cell, depending on its magnitude and circumstances. Each cell contains enzymes topoisomerases 

that regulate DNA supercoiling by constantly adjusting the linking number. Since the linking number of a closed DNA molecule 

remains constant during any deformation of the molecule that preserves chemical bonding, it can therefore be changed only by 

mechanisms in which chemical bonds are disrupted. There are two such mechanisms: (i) a relaxation, in which a bond in one of the 

backbone chains is broken, one end of the broken backbone is rotated about the other backbone by 360◦ and the broken bond is 

repaired, or (ii) a strand passage, described earlier, in which one segment of DNA is passed through a gap created in the second 

segment. Type I DNA topoisomerases use the first mechanism and hence change Lk by by ±1, while type II topoisomerases use the 

second mechanism and change Lk by ±2. 

Natural questions arise, such as what is the configuration of supercoiled DNA with prescribed Lk, what is the probability of occurence 

of topoisomers or knot types, or how much time does it take for a segment of DNA to form a closed molecule. These questions can be 

answered with the help of theories of DNA elasticity, statistical mechanics and dynamics, described in subsequent sections. 
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3.   APPLICATION OF TOPOLOGY TO DNA 

3.1. Differential geometry and DNA: Lk = Tw+Wr, a well known formula in differential geometry, may be even better known in 

molecular biology. The meanings of twist and writhe are probably best demonstrated with a belt. While holding on to one end of the 

belt, twist the other end 1800 for half a twist, 3600 for 1 full twist, etc. Twist describes how two strands (in this case, the two edges of 

the belt) wind about each other in space. Now, without letting go of the twist, close up the belt. If you relax the belt, the twist is 

converted into writhe. If the belt is unknotted, writhe describes the amount of supercoiling. Writhe measures how the center line of the 

belt winds around in space. It is defined to be the sum of all signed self-crossings of the center line averaged over all projections in 

R3. 

 
By moving the belt you are continuously converting writhe to twist and vice versa. Thus, these values are neither integers nor 

topological invariants. However, their sum, Lk, is both an integer and a topological invariant. The linking number is one-half the sum 

of all the signed crossings between the two curves. DNA prefers a certain helical twist base pairs/turn in the test tube). Therefore 

changes in linking number are converted to writhe, i.e., the DNA becomes supercoiled. The more supercoiled the DNA is, the more 

compact it is, and the faster it travels through a gel. Thus the integer differences in linking number can be detected by gel 

electrophoresis. 

 

                      
For example, biologists used differences in linking number to determine that a mutant of Gin recombinase was capable of relaxing 

supercoiled DNA and performing recombination using more than one DNA configuration, whereas wild-type Gin can only perform 

recombination when the DNA is in one specific configuration. This information gave insight into the enzyme mechanism as well. 

Linking differences have also been used to determine topoisomerase activity. 

 

3.2. Graph theory and DNA: Trypanosome is parasite that infects the Tse-tse fly, which in turn infects humans and cows with 

sleeping sickness. The kinetoplast DNA of trypanosome consists of about 5000 mini circles (small circles of DNA consisting of about 

2500 base pairs) and 25 maxi circles (37,000 base pairs) linked together. Biologists wanted to determine how the mini circles were 

linked together. Electron micrographs of the kinetoplast DNA suggested that the huge kinetoplast link admits a diagram in which each 

individual minicircle has no self-crossings, and that pairs of minicircles are linked (if at all) like the Hopf link to adjacent minicircles. 

Ignoring the maxicircles, this assumption allows the complex of minicircles to be translated into graph theory. Each mini circle 

became a vertex; two vertices were connected by an edge if and only if their respective minicircles were linked, giving rise to a planar 

graph. For biological reasons, it is believed that the circles are uniformly linked and monolayered. Thus the researchers investigated 

the seven different ways to tile the plane where all vertices have the same valence and either the tiles have the same shape or there 

exist two different tile shapes each of which is equally well represented: 

                                          
 

They then looked at the probability that if some circles were randomly broken from the graph that a monomer (single circle not linked 

to any other circle) or a dimer (two linked circles) or some other configuration would result. For example, if p is the probability that a 
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circle is broken, then for a 4-valent graph, the monomer probability is p4(1 − p) since the 4 circles that the monomer is linked to 

would have to be broken(probability = p4), but the monomer itself would have to remain unbroken (probability= 1 − p). For a 3-valent 

graph the monomer probability is p3(1 − p).Biologists determined the above probabilities applied to the trypanosome k DNA by 

adding endonucleases, enzymes that break the backbone of DNA, in order to randomly break the minicircles. The results were then 

subjected to gel electrophoresis in order 

to determine the percentage of monomers versus dimers, etc., that were formed. The experimental results were then compared to the 

mathematical results to determine that the following is the most likely configuration: 

                                                          
3.3. Knot theory and DNA: tangles. Some enzymes require DNA to be in a certain configuration in order for the enzyme to act. 

Electron micrographs of the enzyme-DNA complex show the enzyme as a blob with DNA looping out of it. The configuration of the 

DNA within the blob cannot be determined from the EM. Thus, the mathematics of tangles has been used in many cases to determine 

the configuration of the DNA within the enzyme blob. 

                              
The enzyme action is modeled by replacing tangle P with tangle R. Many recombinaseact  processively (i.e. it acts more than once in 

the same place before releasing the DNA). This is modeled by adding on multiple R tangles. Since the substrate and products of the 

experiment are known, this gives several equations which can then be solved for some of the unknown tangles: 

N (Of + Ob + P) = Substrate 

N (Of + Ob + R) = Product 1 

... 

N (Of + Ob + R + ... + R) = Product n 

 unknotting numbers and topoisomerases. Topoisomerases are enzymes that (1.) break the backbone of DNA, (2.) allow passage of 

another segment of DNA through the transient enzyme-bridged break, and (3.) reseal the break. They are responsible for unknotting, 

unlinking, and maintaining the proper supercoiling of DNA during the processes of replication, transcription, and recombination. 

Topoisomerases are also the targets of many antibacterial and anti-cancer drug [Rc ][Wa]. There are two main types of 

topoisomerases. Type 2 topoisomerases break both backbone strands of double-stranded DNA and thus can change the topology of 

double-stranded DNA knots and links. Type 1 topoisomerases can only break a single backbone strand of DNA and thus can only 

change the topology of single-stranded DNA knots and links or double-stranded DNA knots and links if the double-stranded DNA 

contains a nick (a nick is a broken phosphodiester bond between the sugars of two consecutive bases in one of the strands of DNA). 

Type I topoisomerases can then break the phosphodiester bond between the sugars of the complementary bases, thereby breaking the 

duplex DNA segment. Since topoisomerase substrate can be either double-stranded or single-stranded, the line drawings in this paper 

can represent either double-stranded or single-stranded DNA, depending on context. 

                                                                    
In the test tube, at high concentrations, topoisomerases may produce knots by performing strand passages 

[Hs][DSKC][WC][RBW][Rd]. Hence, the unknotting number from knot theory can be used to study topoisomerase action. 

 

3.4. Definition. The unknotting number of a knot is the minimum number of crossing changes needed to convert the knot into the 

unknot where the minimum is taken over all possible diagrams for the knot. 
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This is equivalent to determining the minimum number of times needed for topoisomerase to mediate strand passage on a DNA knot 

to convert it to the unknot, because this temporal sequence of spatial events (strand passages mediated by the enzyme topoisomerase) 

can be simultaneously visualized in a single knot diagram. To see this, for each strand passage event tie an imaginary string between 

the segments of string that pass through each other. Simultaneously shorten all the strings until all such pairs are almost touching; now 

project. Each of the n short strings give rise to a crossing in the resulting diagram; changing all these crossings converts the diagram 

to a diagram of the unknot. Thus if the unknotting number is n, then biologically, the enzyme must act n times to convert the knot to 

the unknot, and mathematically, there exists a diagram of the knot in which one can see n crossings which if changed convert the knot 

to an unknot. 

Example: 

                                                          
Note that the minimum is taken over all diagrams of the knot .For example, the minimal diagram of the knot 108 requires three 

crossing changes to change it to the  unknot. 

                                                                    
But Nakanishi in 1983 and Bleiler in 1984 found a more complicated non minimal diagram of 14 crossings of the same knot which 

required only 2 crossing changes to convert it to the unknot. 

                                                   
Perhaps there exists a diagram of this knot (with possibly a huge number of crossings) which only requires one crossing change to 

convert it to the unknot. This is the difficult question. Fortunately, there exist bounds on unknotting number ([Ms], [N1]) 

   

          

 

 

 

 

    

 

For example, σ(108) = 4 and 

                                         
Thus u(108) = 2. No diagram of this knot can be changed to the  unknot with only one crossing change. The unknotting number can 

be generalized to a metric on knot types where the distance between any two knots is defined as follows: 

 Definition (Strand passage metric on knot types): u(K1,K2) = minimum number of strand passages needed to convert K1 to K2  

where the minimum is taken over all diagrams. 

This satisfies all the properties of a metric: 

1) u (k1,k2) = 0 if and only if k1 = k2. 

2) u (k1,k2) = u(k2,k1). 
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3)u(k1,k2)≤u(k1,k)+u(k,k2) ,for any knot k. 

 Example: u (k1,k2) ≤ u(k1, 01) + u(01,k2), where 01 is the unknot. 

I.e., u (k1,k2) ≤ u(k1) + u(k2). 

That is, the distance between two knots is less than or equal to the sum of theirun knotting numbers. However, there may be a shorter 

path that does not go through the unknot. By doing the crossing changes on a particular diagram, either by hand or by computer, one 

can easily determine upper bounds for the distance between two given knots. The difficult question is  then knowing whether or not 

there exists a shorter path. For this lower bounds are needed. Murakami [Mk] generalized Murasugi’s signature lower bound for the 

unknotting number to obtain the following lower bound for the strand passage metric: 

                                          
This lower bound also holds for semi-oriented links. Example: 

                      

              
and 

                   
 

 

Many of the unknotting number lower bounds such as signature were found by determining the effect a crossing change has on a 

particular invariant followed by an induction argument. The strand passage metric table on the next page lists the distance between 

two knots up to mirror images 

( since u(K1,K2) = u(K*1 ,K*2 ) ). Unfortunately, not all values are known. For example the distance between 41 and 51 is either 2 or 

3. That is, 41 can be changed to 51 by only 3 strand passages. However, it is possible that there exists a projection of 41 in which only 

2 strand passages are required to change 41 to 51, but there is no way to change 41 to 51 with only 1 strand passage. Also note that the 

knot designations refer to those given in Rolfsen’s table of knots and not Burde and Zieschang’s ([BZ]’s 52 = [R]’s 5*2). 

This metric was calculated for 4-plat knots and composites of 4-plat knots by computer (with 8 crossing non 4-plats put in by hand) 

using the following information: 
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This metric gives the following information about topoisomerase experiments: 

1.) The minimum number of times topoisomerase must perform strand passage to inter-convert knots. 

2.) All possible reaction pathways in a topoisomerase experiment if all intermediates are known. For example, in an unpublished 

experiment of J. Wang, a topoisomerase acting on single-stranded circular DNA produced exclusively (+) (2n+1) torus knots which 

correspond to (2n+1)1 in the knot table. Suppose we are interested in the knot 51. The metric tells us that (1.) topoisomerase had to act 

to act at least two times on the unknotted DNA substrate in order to produce the knot 51. and (2.) since all products are of the form 

(2n+1)1, 51 can only be produced from topoisomerase action on the knot 31 or the knot 71 

This kind of reasoning tells us that the only possible reaction pathway the experiment is  

01 ↔31 ↔51 ↔71↔….. 
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5. Conclusion: The paper presented the mathematical methods of topology DNA and its application. Besides  

these topological DNA is very effective in mathematical tools and this technique can be useful in differential geometry in DNA, graph 

theory in DNA, knot theory in DNA. It becomes an integral part of modern science, being used in a vast number of different 

disciplines .they have quickly gained popularity among  the intellectual community that deals with these subject on a day to day basis. 
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